Warning: file_put_contents(aCache/aDaily/post/database_info/--): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Базы данных (Data Base) | Telegram Webview: database_info/1478 -
Telegram Group & Telegram Channel
Антипаттерн: N+1 запросов и как его избежать

Что такое N+1?
При выборке связанных данных ORM (или вручную) сначала делается 1 запрос за основными записями, а потом N дополнительных — по одной для каждой записи, чтобы получить связанные объекты. Например, получить 10 пользователей и для каждого — список их заказов ⇒ 1 запрос к users + 10 запросов к orders. 🚩


# SQLAlchemy-пример “N+1”:
users = session.query(User).all() # 1 запрос
for u in users:
print(u.orders) # для каждого пользователя — отдельный запрос


Почему плохо?

🔹 Высокая нагрузка на базу: запросы “в тоненькую” вместо одного “тяжелого”.
🔹 Задержки сети: множество раунд-трипов увеличивает время ответа.
🔹 Масштабируемость страдает: при росте N время растёт линейно.

Как победить N+1

1. Eager loading (предварительная загрузка)
Загрузка связей сразу вместе с основными объектами.


# SQLAlchemy, joinedload — делает JOIN и подтягивает данные сразу
from sqlalchemy.orm import joinedload

users = session.query(User).options(joinedload(User.orders)).all()
for u in users:
print(u.orders) # не генерирует дополнительных запросов


Сокращает число запросов до 1.

2. Batch loading (групповые запросы)
Если JOIN приводит к дублированию полей, можно сделать два запроса:


-- 1: получить user_id
SELECT id FROM users WHERE active = true;
-- 2: получить все заказы для этих пользователей
SELECT * FROM orders WHERE user_id IN (...список id...);


Баланс между сложностью и производительностью.

3. DataLoader / кеширование
В GraphQL и приложениях на Node.js часто используют DataLoader:

🔹 Собирает все ключи за тиковый цикл
🔹 Делает один общий запрос
🔹 Раздаёт результаты обратно

4. Правильное проектирование API
— Предусматривайте, какие связи нужны на фронтенде, и загружайте их сразу.
— Разделяйте endpoints: если нужны только пользователи без заказов — делайте лёгкий запрос.

Best practices & подводные камни

🔹 EXPLAIN ANALYZE для проверки плана: убедитесь, что JOIN-ы и IN (…) не приводят к полному сканированию таблиц.
🔹 Пагинация: всегда ограничивайте выборку через LIMIT/OFFSET или курсоры.
🔹 Будьте осторожны с joinedload на “много ко многим” — может раздувать размер результата.

Сохрани этот пост, чтобы не забыть, и поделись с коллегами!
А у тебя были случаи, когда N+1 съедал всю производительность? Как борешься?

#db

👉 @database_info



tg-me.com/database_info/1478
Create:
Last Update:

Антипаттерн: N+1 запросов и как его избежать

Что такое N+1?
При выборке связанных данных ORM (или вручную) сначала делается 1 запрос за основными записями, а потом N дополнительных — по одной для каждой записи, чтобы получить связанные объекты. Например, получить 10 пользователей и для каждого — список их заказов ⇒ 1 запрос к users + 10 запросов к orders. 🚩


# SQLAlchemy-пример “N+1”:
users = session.query(User).all() # 1 запрос
for u in users:
print(u.orders) # для каждого пользователя — отдельный запрос


Почему плохо?

🔹 Высокая нагрузка на базу: запросы “в тоненькую” вместо одного “тяжелого”.
🔹 Задержки сети: множество раунд-трипов увеличивает время ответа.
🔹 Масштабируемость страдает: при росте N время растёт линейно.

Как победить N+1

1. Eager loading (предварительная загрузка)
Загрузка связей сразу вместе с основными объектами.


# SQLAlchemy, joinedload — делает JOIN и подтягивает данные сразу
from sqlalchemy.orm import joinedload

users = session.query(User).options(joinedload(User.orders)).all()
for u in users:
print(u.orders) # не генерирует дополнительных запросов


Сокращает число запросов до 1.

2. Batch loading (групповые запросы)
Если JOIN приводит к дублированию полей, можно сделать два запроса:


-- 1: получить user_id
SELECT id FROM users WHERE active = true;
-- 2: получить все заказы для этих пользователей
SELECT * FROM orders WHERE user_id IN (...список id...);


Баланс между сложностью и производительностью.

3. DataLoader / кеширование
В GraphQL и приложениях на Node.js часто используют DataLoader:

🔹 Собирает все ключи за тиковый цикл
🔹 Делает один общий запрос
🔹 Раздаёт результаты обратно

4. Правильное проектирование API
— Предусматривайте, какие связи нужны на фронтенде, и загружайте их сразу.
— Разделяйте endpoints: если нужны только пользователи без заказов — делайте лёгкий запрос.

Best practices & подводные камни

🔹 EXPLAIN ANALYZE для проверки плана: убедитесь, что JOIN-ы и IN (…) не приводят к полному сканированию таблиц.
🔹 Пагинация: всегда ограничивайте выборку через LIMIT/OFFSET или курсоры.
🔹 Будьте осторожны с joinedload на “много ко многим” — может раздувать размер результата.

Сохрани этот пост, чтобы не забыть, и поделись с коллегами!
А у тебя были случаи, когда N+1 съедал всю производительность? Как борешься?

#db

👉 @database_info

BY Базы данных (Data Base)




Share with your friend now:
tg-me.com/database_info/1478

View MORE
Open in Telegram


Базы данных Data Base Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Базы данных Data Base from sg


Telegram Базы данных (Data Base)
FROM USA